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We analyse the one-dimensional Coulomb problem (1DCP) pointing out some mistaken beliefs on it. We
show that no eigenstates of even or odd parity can represent states of the system. The 1DCP exhibits a
sort of spontaneous breaking of parity. We also show that a superselection rule operates in the system.
Such rule explains some of its peculiarities. We build the superpotential associated to the 1DCP.

 2009 Elsevier B.V. All rights reserved.

The Hamiltonian (qe = h̄ =m = 1)

H1DH = −1
2

d2

dx2
− 1

|x| (1)

describes a one-dimensional quantum system with many uses de-
spite its apparent simplicity [1–16]. The Hamiltonian (1) arises
whenever one tries to describe systems with Coulomb-like inter-
actions but constrained to move in one direction. For example, in
describing atoms in superstrong magnetic fields [17], or excitonic
motion in condensed matter [13,18], in studying above treshold
ionisation of atoms on intense laser fields [19], or in describ-
ing electrons hovering above superfluids [18,20,21]; the 1DCP has
many uses in atomic, molecular and condensed matter physics. Ad-
ditionally, an essentially two-dimensional set of electrons trapped
in the one-dimensional hydrogenic levels of (1) has been suggested
as a possible realisation of a quantum computing device [22,23].
Behaviour under the |x|−1 potential has been suggested as means
for studying chaos in periodically driven atoms and for modelling
excited states of hydrogen in a DC electric field. This is possi-
ble because the electronic distribution along the field [24,25] may
be regarded [3,26–28] as interacting through (1). It is to be also
noted that only references [15] and [16] deal with the scattering
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problem, all the others deal with the bounded part of the spec-
trum.

With the many uses of the one-dimensional Coulomb potential
some claims made lately are troublesome. For example, it has been
asserted that the potential of an 1DCP does not properly exist1 or
that, even if it exists, the Coulomb potential and its supersymmet-
ric partner in one dimension are identical [3], or that there can be
no superpotential associated with the −1/|x| potential [29]. In this
Letter, we show that such claims are not correct.

The peculiar features of the 1D Coulomb potential have pre-
vented the calculation of critical electric moments in one dimen-
sion [30]. It has been suggested [1] that the eigenfunctions of
the problem are only odd because, it is argued, the even eigen-
states fail to be solutions of the problem. Contrary to these claims,
the 1DCP admit no eigenfunctions symmetrical under inversion
through the origin exhibiting a sort spontaneous breaking of parity
[9,11]. That is, Nouri’s conclusion [1] on the parity of the prob-
lem’s eigenstates is untenable. Even the infinite energy ground
state, shown not to exist a long time ago [8,9,31], is still in use
[1,30]. Our results show that the conclusions on the superpotential
in [3] and in [29] cannot be regarded as correct.

The Hamiltonian (1) is not in general self-adjoint. Self-adjoint
four-parameter extensions have been derived in [32], such exten-

1 The mistaken claims began from the supposed existence of a strongly localised
state of infinite binding energy as argued in [5].
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sion admits Hamiltonian (1) as one of its members [1,2,4,13,32].
HD together with the matching condition φ(x)|x=0 = 0 is self-
adjoint. However, these considerations have had little effect on
what people considers as properties of the system [29,30,33].

In this letter, we work not with the full self-adjoint extension
of (1) but just with Hamiltonian (1) which, together with Dirich-
let boundary conditions (i.e. φ(x)x=0 = 0), coincides with the self-
adjoint Hamiltonian HD of [32]. The Hamiltonian (1) is precisely
the one studied when analysing the 1D Coulomb problem [1–6,8–
13,20,22,28,29,31,34,35]. Besides, the path integral approach, with
a measure given by the kinetic energy, yields HD as the only finite
self-adjoint extension leading to a time evolution coincident with
the evolution predicted by (1) [32]. Thence our choosing of (1) and
not of any other among the four-parameter extension. Hamiltonian
HD is, besides, the only one among the elements of the self-adjoint
extension which is defined over a set of functions making the ki-
netic energy operator to be also essentially self-adjoint [32]. The
physical consequences of the mentioned properties of (1) single
out this Hamiltonian, taken together with the Dirichlet bound-
ary condition, as the self-adjoint Hamiltonian describing the one-
dimensional Coulomb problem. These are the Hamiltonian and the
boundary condition used in this work.

Let us pinpoint that the potential deserving the name one-
dimensional Coulomb potential is not −1/|x|. In one dimension
the potential must be the solution of the Poisson equation φ′′

1DC =
−4πδ(x), where δ(x) is a Dirac delta function [36]. Solving that
equation we find the 1D Coulomb potential as φ1DC(x) = −2π |x|.
Therefore, V1DC(x) = 2π |x|. However, this is not the potential usu-
ally referred to as the one-dimensional Coulomb potential; the
potential to which such name is applied is V1DH = −1/|x|, as in (1).
This potential needs to be treated with care because of the singu-
larity at x = 0 [2,22,32,37,38] but it definitively belongs, together
with φ(x)|x=0 = 0, in the self-adjoint Hamiltonian extending (1)
[equations (2) and (3) in [32]]. The existence of a superpotential
associated with V1DH(x) and hence of a supersymmetric extension
of (1) can be exhibited explicitly, as we show in what follows.

The potential in Hamiltonian (1) [2,9,37] has been claimed to be
its own supersymmetric partner [3], this claim is not correct as we
show in this letter, see also [10,27]. It has been proved that the
system violates the nondegeneracy theorem for one-dimensional
problems [5,9,12]. A superselection rule has been shown to operate
in the system [11,12,37,39]. The system hence illustrates superse-
lection rules which may be of importance for quantum computing
[22,40,41] and has also served for studying strong field effects in
atoms [17,19,34,42]. Hamiltonian (1) has been also used for mod-
elling electrons floating over liquid helium [18,20–22]. This use has
been challenged and quantum defect theory has been proposed for
better accounting of the experimental facts [13,43], but even the
new proposal is closely related to (1).

In the case of the hydrogen atom within a magnetic, B, field,
the motion of the electron can be regarded as a product of trans-
verse Landau states times states depending on a coordinate parallel
to B [17,44]. The motion at right angles to the magnetic field is
confined to distances of the order of ρc = √

c/B . As the intensity
of B is increased, ρc → 0 leaving only the motion along the mag-
netic field for a dynamical description [34]. For superstrong mag-
netic fields, the potential felt by the electron (assuming B pointing
in the x-direction) can be approximated with (1). Any use of this
model should take into account the barrier it poses to electrons in
one dimension: they cannot move from x < 0 to x > 0 because of
the mentioned superselection rule [11,27,37]. Some properties of
the system can be explained by such superselection rule. For ex-
ample, it prevents parity eigenstates in the system [11,12,27,37]
thus confirming the result of [33] on the nonexistence of even
parity states in the system but disproving the conclusion about
the odd states. All parity eigenstates are forbidden in a system

interacting through (1) [9,11,37,45]. The problem’s Hamiltonian
thus produces a toy version of the superselection rule explaining
away the paradox of optical isomers of quantum chemistry [40,46,
47]. For another example of a quantum system with a superse-
lection rule and with possible importance for quantum computing
see [48].

The eigenfunctions describing the bound states of the one-di-
mensional hydrogen atom [9,10,37] are

φ+
n (x) = Fn(x) and φ−

n (x) = Fn(−x), (2)

where the function Fn(x) is defined by

Fn(x) =
{
2(−1)n−1n−3/2xL1n−1(2x/n)exp(−x/n) if x ! 0,
0 if x < 0,

n = 1,2,3, . . . (3)

and the L1m(x) are the generalised Laguerre polynomials used
in [13]. Notice the vanishing of the eigenfunctions at x = 0 and the
explicit separation between the x > 0 and the x < 0 regions. This
feature, explicitly exhibiting a sort of spontaneous breaking of par-
ity, is a manifestation of the superselection rule which prohibits
any superpositions of the right ψ+

n with the left ψ−
n eigenstates

[9,11,48]. The operator generating the superselection rule is

Ŝ =
∑

n

(∣∣n+〉〈
n+∣∣ −

∣∣n−〉〈
n−∣∣), (4)

where |n±〉 correspond to the eigenfunctions of the system φ±
n ,

and n runs over all its admissible values. We pinpoint that the
eigenfunctions (2) solve the problem with the matching condi-
tion φ±

n (0) = 0 and that they are different from others derived
in the literature because most others are forced to be parity in-
variant. It may be useful to mention that the eigenfunctions given
in equation (26) of [13] are not related to Hamiltonian (1) but
just to some inequivalent isospectral Hamiltonian derived in that
paper. So there is not necessarily any relationship with our eigen-
states (2).

The energy eigenvalues of the problem are [9,13,16,45]

En = − 1
2n2

, n = 1,2,3, . . . , (5)

the ground state energy is thus E1 = −1/2 — so the supposed
ground state with infinite binding energy proposed in [5] does not
exist. All the eigenfunctions of the problem vanish either to the
right, the states φ+

n , or to the left, the states φ−
n , of the singularity

at x = 0. If we define parity eigenstates

φodd = (2)−1/2(φ+ − φ−) and φeven = (2)−1/2(φ+ + φ−),

(6)

these eigenstates would not be independent because their Wron-
skian determinant, W (φodd,φeven), would then vanish. Therefore,
parity eigenstates cannot exist for the self-adjoint extension HD .
Moreover, as can be established using a slight modification of the
previous argument, any coherent superposition of the φ+

n with the
φ+
m states is completely devoid of meaning [34,37,48]. This also es-

tablishes that a superselection rule [49] preventing superpositions
between left and right eigenstates operates in the system. The
existence of the superselection rule can be recasted as the impen-
etrability of the 1D Coulomb potential [12]. It is also in agreement
with the result of [16] on the vanishing of the transmission am-
plitude for scattering off an 1DCP with no regard as to whether it
is an attractive or a repulsive potential. Most previous papers on
the 1DCP use different and incorrect eigenstates therefore some of
their results are erroneous.

The eigenfunctions we have calculated allow us to recalculate
the supersymmetric extension of the one-dimensional Coulomb
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Hamiltonian. Such extension has an importance that cannot be
underestimated since it may be relevant to the exact calculation
of multisoliton solutions of certain high order partial differential
equations [35,50–52]. It is also relevant in the search of isospectral
potentials in quantum mechanics [3,13,51,52]. The supersymmet-
ric partner potentials can be also profitable used for dealing with
other physical systems as sometimes it is easier to solve the part-
ner than the original potential [27]. For such reasons and given the
many applications of the 1DH Hamiltonian, (1), the computation of
the supersymmetric extension of the Hamiltonian of a particle in-
teracting through a −1/|x| potential is relevant.

The superpotential, W (x), associated to the 1D Coulomb poten-
tial is given in term of the ground state φ1(x), as [10,53]

W (x) = −φ′
1(x)

φ1(x)
, (7)

taking both ground states, φ+
1 (x) for x > 0 and φ−

1 (x) for x < 0, we
obtain

W (x) = sgn(x) − 1
x
, (8)

where sgn(x) is the signum function. Using W (x), the corre-
sponding partner potentials can be calculated [51] as V±(x) =
(1/8)(dW /dx)2 ± (1/4)d2W /dx2, that is,

V+(x) = 1
2

− 1
|x| + 1

x2
and V−(x) = − 1

|x| + 1
2
, (9)

where V− is the one-dimensional Coulomb potential used in (1),
V1DH , but shifted so that its ground state energy is zero, and V+
is the partner potential — in which a superselection rule also op-
erates [27]. Equation (9) explicitly disproves the claim in Ref. [3]
about the identity between V+ and V− .

The raising and lowering operators are

A+ = − d
dx

+ W and A = d
dx

− W , (10)

where
[
A, A+]

= 2
dW
dx

= 2
(
V+ − V−)

= 2
x2

and V+ + V− = 2W 2.

(11)

It is remarkable that eigenvalue problems for the Hamiltonians
H± = −(1/2)d/dx2 + V±(x) for the partner potentials V−(x) and
V+(x), would correspond to the defining equation for Whittaker
functions [54]. It should be additionally shown that there exists a
dense set of functions on which the above commutation relation is
well defined (see, for example, [38]).

We have thus established that the one-dimensional potential
V1DH can be regarded as stemming from the superpotential W (x)
in Eq. (7) and that our results allow the calculation of the crit-
ical dipole moment in one dimension — in disagreement with
what some people believes [30]. We have proved that both the
claim of parity eigenstates, made in [1,5,29,33] and of the non-
existence of a superpotential for the 1DCP, discussed in [3], are
mistaken. We have shown that the quantum 1DCP cannot admit
even or odd eigenstates. This is due to the superselection rule op-
erating in the system [11,37], causing also a sort of spontaneous
breaking of parity. The scattering results in [16] help to corrobo-
rate such conclusion. Any conclusion arrived at by assuming the
existence of parity invariant states, as in Refs. [1,3], cannot be cor-
rect.
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