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The hydrogen atom is solved using a simple method. We show that this system has an exact solution
that can be written in terms of Laguerre polynomials of noninteger index, instead of the
hypergeometric series. This point is important because Laguerre polynomials of integer index
appear in the solution of the nonrelativistic hydrogen atom, giving students a more unified point of
view for this system. ©2000 American Association of Physics Teachers.
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I. INTRODUCTION

Many of us learned relativistic quantum mechanics in
excellent bookRelativistic Quantum Mechanics1 by Bjorken
and Drell. In this book the solution to the bound states of
relativistic hydrogen atom appears as a power series, w
one cuts the development at a certain power, in orde
avoid divergences at infinity. This is an excellent way
illustrate the Frobenius method, but leaves one with the f
ing that the solution to this problem is not related to a
well-known function and has no exact solution except, p
haps, for an obscure case of the hypergeometric funct
Many other books and articles also give the solution eithe
a series or as a particular case of the hypergeometric func
~evaluated at a certain negative integer to avoid the div
gences already mentioned!.2–5 Another objection to the usua
presentation found in many textbooks is related to invaria
under rotations. That is, we know very well that the poten
V(r )52Ze2/r gives a Hamiltonian invariant under rota
tions, so angular momentum is a conserved quantity.
thus expect to have a radial Hamiltonian equivalent to
nonrelativistic Schro¨dinger equation

H52
\2

2m

d2

dr22
1

r S d

dr D1
l ~ l 11!

2r 2 1V~r !. ~1!

This radial Hamiltonian clearly exists, but it is not often th
one sees it.

The purpose of this article is to solve the relativistic h
drogen atom and to show that this problem has an e
solution in terms of Laguerre polynomials, as is also the c
in the nonrelativistic problem, giving the student a unifi
perspective of the quantum hydrogen atom. The Lagu
polynomials are a little bit different than those used in t
nonrelativistic case, since these polynomials are labeled
noninteger index. Nevertheless, they still have a Rodrig
formula, making the ease of handling greater than the se
or hypergeometric formulation. We also construct a rela
istic radial Hamiltonian equivalent to the nonrelativistic ca

This paper is organized as follows. In Sec. II we introdu
the equations of the problem and solve for the angular pa
the solutions. In Sec. III we show that the solutions are c
structed in terms of Laguerre polynomials of noninteger
dex. In Sec. IV we find the energy spectrum and use
properties of angular momentum to construct a classifica
scheme of the eigenstates. We also use the propertie
these polynomials to find the normalization constant. In S
V we study the nonrelativistic limit to see how we can r
cover the usual integer Laguerre functions from the o
studied here. In the Appendix we study some properties
1050 Am. J. Phys.68 ~11!, November 2000 http://ojps.aip.or
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Laguerre polynomials of noninteger index. We relate them
the Sonine polynomials and to the hypergeometric functi

II. THE DIRAC HYDROGEN ATOM

Let us begin with the Dirac Hamiltonian of the hydroge
atom

HD5a"pc1bmc21V~r !, ~2!

where V(r )52Ze2/4pe0r is the Coulomb potential,m is
the mass of an electron,c is the light velocity, anda andb
are the standard Dirac matrices in the Dirac representati6

a5S 0 s

s 0 D , b5S 1 0

0 21D . ~3!

Here the 1’s and 0’s stand, respectively, for 232 unit and
zero matrices and thes is the standard vector composed
the three Pauli matricess5(sx ,sy ,sz). Since the Hamil-
tonian ~2! is invariant under rotations, we look for simulta
neous eigenfunctions ofHD , uJu2, andJz , whereJ5L1S
and

S[
1

2
S5

\

2 S s 0

0 s
D . ~4!

To do this, we remark that the spin operator is diagona
terms of 232 Pauli spin matrices; therefore the angular p
should be precisely that of the Pauli two-component theo
So, the solutions of the problem can be written in the for

c~r ,u,f!5
1

r S F~r !Yjm~u,f!

iG~r !Yjm8 ~u,f! D , ~5!

where Yjm(u,f) and Yjm8 (u,f) are two spherical spinors7

and thei factor is just a matter of convenience. According
the triangle rule of addition of momenta, the orbital angu
momentuml is given by j 5 l 6 1

2; consequently the spherica
spinors are of the form

Yj 5 l 61/2m~u,f!5
1

A2l 11
S 6Yl

m21/2~u,f!Al 6m11/2

Yl
m11/2~u,f!Al 7m11/2 D .

~6!

We also remark that parity is a good quantum number
this problem because the Coulomb potential is invariant
der reflections. Parity goes as (21)l , but instead of working
directly with parity, we prefer to introduce the quantu
numbere defined by
1050g/ajp/ © 2000 American Association of Physics Teachers
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e5H 1 l 5 j 1 1
2,

21 l 5 j 2 1
2,

~7!

thus l 5 j 1e/2 in all cases. Since a parity operation is giv
by c(r ,u,f)→bc(r ,u,f), we have an extra minus sign fo
the small component. This means thatYjm(u,f) and
Yjm8 (u,f) are of opposite parity. This is turn means th
when the big component couples with, say,l 5 j 11/2, the
small one should couple with the only other option availab
l 85 j 21/2. With this point in mind, we definel 85 j 2e/2.
Accordingly, the spherical spinorYjm(u,f) depends onl
whereas the spherical spinorYjm8 (u,f), which has an oppo-
site parity, depends onl 8. We then put for the wave function

c~r ,u,f!5
1

r S F~r !Yl 2e/2m~u,f!

iG~r !Yl 81e/2m~u,f! D . ~8!

Writing the solutions in the form~8! completely solves the
angular part of the problem. The reader can verify the va
ity of the solution presented here in many ways. One po
bility is to show that the operatorb(11S•L ) commutes
with the HamiltonianHD . This means that the solutions~8!
satisfy the relation

b~11S"L !c~r ,u,f!5lc~r ,u,f!, ~9!

or equivalently that (11s"L )Yjm(u,f)56lYjm(u,f). It
is not hard to show thatl52e( j 11/2); with this result, he
or she can show that the only~except for a phase! normalized
eigenfunctions are precisely the spherical spinors.8

III. THE RADIAL PART

Let us now address the radial part of the problem. We
interested in bound states; therefore the quantityk
[(1/\c)Am2c42E2 is positive definite. Furthermore, let u
define

z[
Ze2

4pe0\c
5Za, t j[eS j 1

1

2D , n[Amc22E

mc21E
,

~10!

wherea51/137 is structure fine constant. To construct t
radial Hamiltonian, we use first the relation (a"r )(a"p)
5(1/\2)(S"r )(S"p)5r "p1( i /\)S"L . We then use thatJ2

5@L1(1/2)S#25L21S"L1(3/4)\2. So we now need an
expression forL2 to obtainL "S. The point here is thatL2 is
not a good quantum number, since only the total angu
momentum commutes with the Hamiltonian. From the g
eral form of c(r ,u,f) @Eq. ~8!# we see that whenL2 is
applied to a solution, the big component behaves with
orbital quantum numberl 5 j 1e/2, whereas for the smal
one the orbital quantum number isl 85 j 2e/2. We then have

l ~ l 11!5 j ~ j 11!1e~ j 1 1
2!1 1

4 ~11a!

for the big component, and

l 8~ l 811!5 j ~ j 11!2e~ j 1 1
2!1 1

4 ~11b!

for the small one. Thus the action ofL2 over one solution of
the form given by~8! is always

L25\2@ j ~ j 11!1be~ j 1 1
2!1 1

4#, ~12!
1051 Am. J. Phys., Vol. 68, No. 11, November 2000
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whereb is given in Eq.~3!. From this result we can deduc
the termL "S and substitute it into (a"p). We finally obtain

~a"p!5a rFpr2 i\b
e

r S j 1
1

2D G , ~13!

where

a r[
1

r
a"r ,

~14!

pr[
~2 i\!

r

d

dr
r 52

i\

r S 11r
d

dr D .

We are then ready to write the relativistic radial Hamiltoni
@equivalent to Eq.~1! of the nonrelativistic case#. The result
is very simple,

HD5a rFpr2 i\b
e

r S j 1
1

2D G1bmc21V~r !. ~15!

We see that in the relativistic case the equivalent term for
centrifugal force term l ( l 11)/r 2 is now 2 i\a rbe( j
11/2)/r . The important point here is that this result is val
for any central potentialV(r ).

Now we are ready to study the radial part of our proble
The first things we need to consider are the termss•r that
come in thea r term. Since thea matrix is nondiagonal@Eq.
~3!#, the equation for the big component has a mixed term
the form (s•r )Yl 81e/2m and exactly the opposite for th
small one, where we must deal with (s•r )Yl 2e/2m . Of
course we know that both terms should be canceled out
we suspect that we have a proportionality relation of
form (s•r )Yl 6e/2m;Yl 7e/2m . We can show that this is ex
actly the case using the following argument. First notice t
if we perform a reflection through the origin, the term, s
(s•r )Yl 1e/2m , goes as (s•r )Yl 1e/2m→2(21)l(s
•r )Yl 1e/2m ; because of the extra change of sign produced
(s•r ). But this is precisely the behavior of the only oth
spherical spinor available,Yl 2e/2m , so both terms should be
proportional. Let us call the constant of proportionalitya.
From the well-known relation Yl

m(0,f)5@(2l 11)/
4p#1/2]dm0 we find9,10

~s•r !Yl 6e/2m~u,f!uu5052Yl 7e/2m~u,f!uu50 . ~16!

So we conclude thata521.
Now we can write the differential equations for the rad

part of the problem in terms of the dimensionless varia
r5kr as

S 2
d

dr
1

t j

r DG~r!5S 2n1
z

r DF~r! ~17a!

and

S d

dr
1

t j

r DF~r!5S n211
z

r DG~r!, ~17b!

where we use the Coulomb potentialV(r )52Ze2/4pe0r .
We now redefine the radial functionsF(r) and G(r) in

Eqs.~17a! and ~17b! to the form

F~r!5Amc21E@c1~r!2c2~r!#, ~18!

G~r!5Amc22E@c1~r!1c2~r!#. ~19!
1051R. P. Martı´nez-y-Romero
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In terms of the new functionsc1(r) and c2(r), we thus
arrive at the following set of equations for our problem:

Fr
d

dr
2r1

zE

Am2c42E2Gc2~r!

5S zm

Am2c42E2
1t j D c1~r! ~20!

and

F2r
d

dr
2r1

ze

Am2c42E2Gc1~r!

5S zm

Am2c42E2
2t j D c2~r!. ~21!

This first-order system can be uncoupled multiplying
the left the first equation@Eq. ~20!# times the operators tha
appear between square brackets in the second equation
vice versa, by multiplying the second equation@Eq. ~21!#
times the operators that appear~between square brackets! in
the first one. This procedure gives us the second-order
tem

F2r2
d2

dr22r
d

dr
22~m21!r1r21~t j

22z2!Gc2~r!50

~22!

and

F2r2
d2

dr22r
d

dr
22mr1r21~t j

22z2!Gc1~r!50,

~23!

where we have defined

m[
zE

Am22E2
1

1

2
. ~24!

Let us now studyc1(r). To that end, we first define th
function v(r) according toc1(r)[rs exp(2r)v(r). After
that, we putL(r)[v(r/2) to finally get

r
d2L~r!

dr2 1@~2s11!2r#
dL~r!

dr

1F ~s21z22t j
2!

r
1~m2s21/2!GL~r!50. ~25!

We now impose the condition that the solution must be w
behaved at the origin. This in turn implies that the term 1r
should vanish:

s21z22t j
250, ~26a!

where we choose the positive root to avoid the diverge
already mentioned,

s51At j
22z2. ~26b!

This condition is precisely the same one obtained in
power series method, when one asks for a regular behavi
the origin.

We also look for vanishing solutions at infinity. From E
~25! we see that in this limit the terms proportional tor
dominate, so for very larger we have rd2L(r)/dr2

2rdL(r)/dr'0. The solution to this equation is clearly a
1052 Am. J. Phys., Vol. 68, No. 11, November 2000
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exponential plus a constant, unimportant for the point
hand. We then obtain that for very larger, v(r)'e2r; or
equivalently thatc1(r)'rser. This solution diverges at in-
finity unless we ask for the series to be a polynomial. If w
choose

m2s21/25n, ~27!

where n is an integer, then the resultant equation can
regarded as a generalization to the noninteger indexs of the
usual associated Laguerre differential equation.11 From Eq.
~27! we can deduce the energy spectrum, without explic
solving the differential equation~25!, but we shall discuss
this point in Sec. IV.12 As shown in the Appendix, the solu
tions to this differential equation are polynomials of ordern.
The equation corresponding toc2(r) can be obtained in
analogous fashion. The complete solution can then be wri
as

c2~r!5ars exp~2r!Ln21
2s ~2r!,

~28!c1~r!5brs exp~2r!Ln
2s~2r!,

wherea andb are, at present, unknown constants.
The Laguerre polynomialsLn

a(r) of noninteger index are
related to both the hypergeometric1F1(2n,a11;r) and the
Sonine polynomials13 Ta

(n)(r) through the relation

Ln
a~r!5

G~a1n11!

n!G~a11! 1F1~2n,a11;r!

5~21!nG~a1n11!Ta
~n!~r!. ~29!

As we shall see in the Appendix, these polynomials are v
similar to the usual integer index Laguerre polynomials.
the Appendix we also study some of their more importa
properties.

IV. THE ENERGY SPECTRUM

The energy spectrum is easily obtained from the soluti
we found here. We substitute Eq.~28! into the original radial
differential equations@Eqs. ~17a! and ~17b!# and substitute
the recurrence relations~A2! from the Appendix to obtain
the following conditions:

a~t j1s2zn211n!1b~n12s!50,
~30!b~t j2s1zn212n!2an50.

Solving these last two equations gives us a relationship
tweenn andn. From Eq.~10! we see that we can then solv
for the energyE and obtain the energy spectrum; the resul
given by

E5mc2F11
z2

~m21/2!2G21/2

. ~31a!

We can write our result in a more familiar form if we defin
the principal quantum number asN[ j 11/21n, ande j as

e j[N2s2n5 j 1 1
22s, ~31b!

thenm21/25s1n5N2e j , which gives precisely the well-
known energy spectrum.14–16 This result is exactly the sam
as the one obtained from Eq.~27!, so we are now very con
fident of the validity of~30!.

To proceed, we shall takeb52a(t j1s1n2zn21)/(n
12s), and write the result in a symmetrized form:
1052R. P. Martı´nez-y-Romero
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F~r!5Amc21ECrse2r@AnLn
2s~2r!1BnLn21

2s ~2r!#,
~32a!

G~r!52Amc22ECrse2r@AnLn
2s~2r!2BnLn21

2s ~2r!#,

whereAn andBn are given by

An5~t j1s1n2zn21!1/2,
~32b!Bn5~n12s!~t j1s1n2zn21!21/2

andC is a normalization constant. It can be obtained from

E
0

`

e2xxaLn
a~x!Lm

a ~x!dx5dmn

G~n1a11!

n!
. ~33!

In the Appendix we give a simple proof of this result. W
again need to use relations~30! in order to obtain (t j1s
1n2zn21)215(n1s2t j2zn21)/n(n12s). We also will
need (n1s)5zE/Am2c42E2, which is obtained from the
expression for the energy@Eq. ~31a!#. Elementary algebra
gives the result

uCu5
\2s21

Zac2 An!k

2m3 @G~n12s11!#21/2. ~34!

Although Eq.~32! was discovered a long time ago by L
Davies,17 it has remained largely unknown.18 Nevertheless,
its importance should not be neglected. In fact, it is poss
to obtain complex results in an easy way with the resu
found here. For instance, it has recently been employe
calculate arbitrary matrix elements of powers of^r q&, and
recurrence relations for arbitrary nondiagonal, radial hyd
genic relativistic matrix elements, including a relativist
version of the Pasternack–Sternheimer rule.19

Another point worthy of mention concerns the classific
tion of the states of this system. We recall that according
our definition, the principal quantum number is given byN
5 j 11/21n, wheren is the degree of the Laguerre polyn
mial associated with this state. For the ground stateN51, we
have only j 51/2 andn50. Sincel 5 j 1e/2, we have two
choices,l 50 for e521 andl 51 for e51. This last result
is not possible, sincel cannot be greater thanj, so this state
does not exist. In the traditional spectroscopic notationNl j ,
we have only one state 1S1/2(e521). For the next energy
level, we haven52, and j 51/2, 3/2; but again the statej
53/2 and e51 does not exist. We then have only thr
states: 2S1/2(e521), 2P1/2(e51), and 2P3/2(e521).
Continuing in this way, we obtain Table I.

Table I. We can classify the eigenstates of the relativistic hydrogen atom
each value of the principal quantum numberN, according to the way the
orbital angular momentum couples with the spin. Ife511 then j 5 l
21/2. Otherwisee521 andl 5 j 21/2. Note that for eachN the state with
the highest angular momentum exists only fore521.

States Nl j (e)

N j l 50 l 51 l 52

1 1/2 1S1/2 (e521)
2 1/2 2S1/2 (e521) 2P1/2 (e51)

3/2 2P3/2 (e521)
3 1/2 3S1/2 (e521) 3P1/2 (e51)

3/2 3P3/2 (e521) 3d3/2 (e51)
5/2 3d5/2 (e521)
1053 Am. J. Phys., Vol. 68, No. 11, November 2000
le
s
to

-

-
o

V. THE NONRELATIVISTIC LIMIT

It is interesting to study how we recover from our resu
the usual Laguerre polynomials that appear in the nonrela
istic hydrogen atom. First we recall that the nonrelativis
limit for the energy is obtained from the series developm
of E, retaining only the first two terms,

E5mc2F11
z2

~N2e j !
2G21/2

'mc2F12
z2

2N2G . ~35!

So, in this limit we havee j5 j 11/22s'0, becauses
5At j

22z2' j 11/2. That is, in this limits becomes an inte-
ger and the Laguerre polynomials in Eq.~32a! are now the
same as those employed in the nonrelativistic case. Sinz
5Za this means that the effects of the fine structure cons
are negligible, as they should be. For other energy-depen
quantities we follow the same recipe. For instance forn and
k, we easily find that in the nonrelativistic limit

n5Amc22E

mc21E
'

z

2N
,

~36!
k5~1/\c!Am2c42E2'mc

z

\N
.

In order to be more compatible with the nonrelativistic tre
ments, it will be convenient to introduce the nonrelativis
energyEnr[2z2mc2/2N2 (Enr,0) and define

K2[2
8mEnr

\2 5
4m2c2z2

\2N2 '4k2. ~37!

That is, in the nonrelativistic limit we have to put simplyr
52kr→Kr .

We can now study the nonrelativistic behavior of the wa
functions. Perhaps the easiest way to do that is to start f
Eq. ~32a!. Following the same reasoning as above, we ea
find for the nonrelativistic limit ofAn andBn :

An5~t j1s1n2zn21!1/2'@~e21!~ j 11/2!2n#1/2,
~38!Bn5~n12s!~t j1s1n2zn21!21/2

'@~e21!~ j 11/2!2n#21/2.

We need to study two cases depending on whetherj 5 l
11/2 or j 5 l 21/2. Let us start with the casej 5 l 11/2 (e
521). In this case, An' i @n12( j 11/2)#1/2 and Bn

52 i @n12( j 11/2)#21/2. The i is just a phase factor, unim
portant for the point at hand, and means only that the re
tivistic conventions used by us are slightly different than t
nonrelativistic ones. From~32a! we get

F~kr !'uCnrur j 11/2e2kr@Ln
2~ j 11/2!~2kr !2Ln21

2~ j 11/2!~2kr !#

5uCnrur j 11/2e2krLn
2~ j 11/2!21~2kr !, ~39!

where the last step follows from the second recurrence r
tion in ~A5! anduCnru is a normalization constant that can b
obtained from~A9! in the same way as we did for the rela
tivistic case. Sincej 5 l 11/2, we have thatj 11/25 l 11 and
2( j 11/2)2152l 11. Also, from N5 j 11/21n we obtain
that n5N2 l 21. Putting all this together we get

F~kr !'uCnrur l 11e2~K/2!rLN2 l 21
2l 11 ~Kr !. ~40!

This is precisely the nonrelativistic solution we were looki
for.20

or
1053R. P. Martı´nez-y-Romero
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The casej 5 l 21/2, (e51) is a little bit more involved. In
this case we haveAn' in1/2 and Bn'2 in21/2@n12( j
11/2)#. Again, except for unimportant phases we get fro
~32a! that

F~kr !'uCnrur j 11/2e2kr@nLn
2~ j 11/2!~2kr !

2@n12~ j 11/2!#Ln21
2~ j 11/2!~2kr !#

5uCnrur j 11/2e2krLn8
2~ j 11/2!~2kr !

52uCnrur j 11/2e2krLn21
2~ j 11/2!11~2kr !. ~41!

The second step above follows from the second recurre
relation in ~A2! and the third one follows fromLn8

a(2kr)
52Ln21

a11(2kr). This last relation in turn follows by taking
the derivative in the second recurrence relation in~A5!. Here
l 5 j 11/2 andN2 l 215n21. Again, the minus sign is jus
a phase, so we can put the following for the radial funct
F(kr):

F~kr !'uCnrur l 11e2~K/2!rLN2 l 21
2l 11 ~Kr !. ~42!

So, as expected, we find again the same wave function a
the j 5 l 11/2 case.

The small components go to zero becausemc2@E, as can
be seen in~32a!. The radial function is given byR(r )
5(1/r )F(Kr ), whereF(Kr ) is given by~40! and ~or! ~42!.
The complete, nonrelativistic solution is then just simply

c~r ,u,f!5R~r !Yl 2e/2m~u,f!. ~43!

This last equation means that in the nonrelativistic lim
the angular part is a spherical spinor withl 5 j 1e/2.

VI. CONCLUSIONS

In this paper we found that the solution of the relativis
hydrogen atom is given in terms of Laguerre functions
noninteger index. These functions are handled in exactly
same way as the Laguerre functions of integer index, and
in fact a natural extension of those used in the nonrelativi
limit. This point of view gives the student more powerf
tools than in the series approach used elsewhere. He o
can use recurrence relations, Rodrigues formula, genera
functions, etc. We illustrate this point by calculating the n
malization constant and the nonrelativistic behavior of
solution. This approach also gives the student a more un
point of view of the quantum hydrogen atom, since in bo
cases~relativistic and nonrelativistic!, Laguerre functions are
involved in the solution.

A final remark concerns Eq.~15!. This equation is valid
for any central potentialV(r ) and is completely equivalent t

F2\
d

dr
1

\e

r S j 1
1

2D GG~r !5@E2mc22V~r !#F~r !,

~44!F\ d

dr
1

\e

r S j 1
1

2D GF~r !5@E1mc22V~r !#G~r !.

We can then use it as a departure equation in any ce
potential system, including perturbation theory problems.
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APPENDIX

The purpose of this Appendix is to study some of the m
important properties of Laguerre polynomials of noninteg
index and to use our result to calculate the normalizat
constant, which is not always an easy task. We start from
generating functiong(x,t):

g~x,t ![
e2xt/~12t !

~12t !a11 5 (
n50

`

tnLn
a~x!, ~A1!

which is simply a generalization to the noninteger index
the usual Laguerre generating function. If we differentia
g(x,t) with respect tox and with respect tot, we obtain the
recurrence relations

Ln21
a ~x!5Ln218a ~x!2Ln8

a~x!,

xLn8
a~x!5nLn

a~x!2~n1a!Ln21
a ~x!, ~A2!

~2n1a112x!Ln
a~x!5~n1a!Ln21

a ~x!1~n21!Ln11
a ~x!,

where the prime means derivative with respect tox. These
recurrence relations are exactly the same as those obtain
the integer index case. The generating function is not sin
valued, but we can choose a cut line in the complex plan
try to invert ~A1!. From Fig. 1, we can conclude that

Ln
a~x!5

1

2p i EC

e2xz/~12z!

~12z!a11zn11 dz. ~A3!

We can show that~A3! is a solution of Laguerre’s differ-
ential equation by substituting into Laguerre’s different
equation of noninteger index@Eq. ~25! plus conditions~26!#.
We easily find that the differential equation is the integral
a total derivative over a closed curve, as happens to be
case for the usual Laguerre polynomials.20 Performing the
change of variablexz/(12z)5s2x, we find that

Ln
a~x!5

exx2a

n!

dn~xn1ae2x!

dxn . ~A4!

This result is precisely the Rodrigues formula. We can us
to deduce new recurrence relations, for instance from
expression forLn11

a (x) andLn
a11(x) we find

~n11!Ln11
a ~x!5~n1a11!Ln

a~x!2xLn
a11~x!,

~A5!Ln
a11~x!5Ln

a~x!1Ln21
a11~x!.

Fig. 1. The generating functiong(x,t) is not single valued, but we can
choose a cut line from 1 tò over the real line. The integration contour
given by the circleC of radiusuzu,1.
1054R. P. Martı´nez-y-Romero
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The moral of the story is that we do not need to wo
about the non-single-valuedness of the generating funct
From Leibnitz’ formula and Eq.~A4!, we find the two fol-
lowing equivalent expressions for Laguerre polynomials:

Ln
a~x!5e2xxa(

k50

n
~21!kn!G~n1a11!

k! ~n2k!!G~a1k11!
xk

5e2xxa(
s50

n
~21!n2sn!G~n1a11!

s! ~n2s!!G~n1a2s11!
xn2s.

~A6!

That is, the solutions to the noninteger differential equat
~25! together with the boundary conditions~26! ~regular be-
havior at the origin and vanishing asymptotic value at infi
ity! imply that they behave as a polynomial multiplied by t
factor e2xxa.

We are now ready to study the orthogonality properties
Ln

a(x). If mÞn we can suppose without any loss of gen
ality that m.n. We use the Rodrigues formula andm-times
partial integration to find

E
0

`

e2xxaLn
a~x!Lm

a ~x!dx5
~21!m

n!m! E
0

`

e2xxa1m
dm

dxm

3Fexx2a
dn

dxn ~e2xxa1n!Gdx.

~A7!

This integral converges for Re(a).21. We now use~A6! to
write this last expression in the form

~21!m

m! E
0

`

e2xxa1m
dm

dxm F (
k50

n
~21!kG~n1a11!

k! ~n2k!!G~a1k11!
xkGdx.

~A8!
But in this case we have to differentiate the polynomial
side the square brackets in~A8! more times than its maxi
mum ~integer! power, giving a vanishing result. In othe
words, if mÞn we conclude that~A7! is zero. Ifm5n, after
an n-times derivation, only the last power of the polynom
survives. The result of the integral is a gamma funct
G(n1a11)/n!, giving precisely Eq.~33!,

E
0

`

e2xxaLn
a~x!Lm

a ~x!dx5dmn

G~n1a11!

n!
. ~A9!
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