Relativistic hydrogen atom revisited
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The hydrogen atom is solved using a simple method. We show that this system has an exact solution
that can be written in terms of Laguerre polynomials of noninteger index, instead of the
hypergeometric series. This point is important because Laguerre polynomials of integer index
appear in the solution of the nonrelativistic hydrogen atom, giving students a more unified point of
view for this system. ©2000 American Association of Physics Teachers.

[. INTRODUCTION Laguerre polynomials of noninteger index. We relate them to
the Sonine polynomials and to the hypergeometric function.

Many of us learned relativistic quantum mechanics in the

excellent bookRelativistic Quantum Mechanitby Bjorken

and Drell. In this book the solution to the bound states of the

relativistic hydrogen atom appears as a power series, whete THE DIRAC HYDROGEN ATOM

one cuts the development at a certain power, in order to o , o

avoid divergences at infinity. This is an excellent way to L€t us begin with the Dirac Hamiltonian of the hydrogen

illustrate the Frobenius method, but leaves one with the feel@0m

ing that the solu_tion to this problem is not related to any  Hy=arpc+Bmc+V(r), 2)

well-known function and has no exact solution except, per- ) ] ) )

haps, for an obscure case of the hypergeometric functioWhereV(r)=—Ze/4meor is the Coulomb potentialm is

Many other books and articles also give the solution either ae mass of an electrou,is the light velocity, ande and 8

a series or as a particular case of the hypergeometric functigife the standard Dirac matrices in the Dirac representation

(evaluated at a certain negative integer to avoid the diver- 0 o 1 0
gences already mentioned > Another objection to the usual a:( , /3:( ) (3)
presentation found in many textbooks is related to invariance o 0 0 -1

under rotations. That is, we know very well that the potentialyere the 1's and 0's stand respectively, fox 2 unit and
V(r)=—Z¢/r gives a Hamiltonian invariant under rota- ,ero matrices and the is the standard vector composed of
tions, so angular momentum is a conserved quantity. Wene three Pauli matrices— (o, ). Since the Hamil-
thus ‘Txpe.‘:t,tosh";‘i‘.’g a radial Hamiltonian equivalent to thqgnian (2) is invariant under rotations, we look for simulta-
nonrelativistic Schrainger equation neous eigenfunctions dfiy, |J|2, andJ,, whereJ=L+S

_ A*d® 1(d |(|+1)+V . and

= Zmar? rldr) Tz PV @ 1 #jo 0
This radial Hamiltonian clearly exists, but it is not often that $=32=3l0 o @
one sees it.

To do this, we remark that the spin operator is diagonal in

drogen atom and to show that this problem has an exadfrms of 2x2 P_aull Spin matrices; th_erefore the angular part
solution in terms of Laguerre polynomials, as is also the casghould be precisely that of the Pauli two-component theory.
in the nonrelativistic problem, giving the student a unified>0: the solutions of the problem can be written in the form
perspective of the quantum hydrogen atom. The Laguerre 1 F()Yim(0,0)
polynomials are a little bit different than those used in the  ¥(r,0,¢)= iy (a.4)) (5)
nonrelativistic case, since these polynomials are labeled by a Jjmt =
noninteger index. Nevertheless, they still have a Rodriguesvhere Jj,(6,#) and Vj,(6,¢) are two spherical spinofs
formula, making the ease of handling greater than the seriegnd thei factor is just a matter of convenience. According to
or hypergeometric formulation. We also construct a relativthe triangle rule of addition of momenta, the orbital angular
istic radial Hamiltonian equivalent to the nonrelativistic case.momentumi is given byj =1+ %: consequently the spherical
This paper is organized as follows. In Sec. Il we introducegpinors are of the form
the equations of the problem and solve for the angular part of
the solutions. In Sec. Il we show that the solutions are con- 1
structed in terms of Laguerre polynomials of noninteger in-Yj=1+12m( 0, $)= \/ﬁ :
dex. In Sec. IV we find the energy spectrum and use the ©6)
properties of angular momentum to construct a classification
scheme of the eigenstates. We also use the properties of We also remark that parity is a good quantum number in
these polynomials to find the normalization constant. In Secthis problem because the Coulomb potential is invariant un-
V we study the nonrelativistic limit to see how we can re-der reflections. Parity goes as (L)', but instead of working
cover the usual integer Laguerre functions from the oneslirectly with parity, we prefer to introduce the quantum
studied here. In the Appendix we study some properties ofiumbere defined by

The purpose of this article is to solve the relativistic hy-

=Y VA6, )\1=m+1/2
Y20, ) \TFm+1/2

1050 Am. J. Phys68 (11), November 2000 http://ojps.aip.org/ajp/ © 2000 American Association of Physics Teachers 1050



€= (7)

thusl=j+e€/2 in all cases. Since a parity operation is given
by ¢(r,0,0)— By(r,0,¢), we have an extra minus sign for

the small component. This means th34,(6#,¢) and

yj’m(e,qﬁ) are of opposite parity. This is turn means that

when the big component couples with, sy j+1/2, the

small one should couple with the only other option available:

|"=j—1/2. With this point in mind, we definé’ = — €/2.
Accordingly, the spherical spinay;,(6,¢) depends on

whereas the spherical spin@fm(a,cﬁ), which has an oppo-
site parity, depends dri. We then put for the wave function

1/ F(DYi—eom(6,0)
Yr.0.d)=+ IG(NN+erom(0,8) ) ©

Writing the solutions in the forni8) completely solves the
angular part of the problem. The reader can verify the valid-
ity of the solution presented here in many ways. One possi*

bility is to show that the operatoB(1+2-L) commutes
with the HamiltonianH . This means that the solutiori8)
satisfy the relation

B(1+2L)g(r,0,)=Nip(r,0,6), 9

or equivalently that (¥ o-L)Ym(6,9)=ENYm(6,¢). It
is not hard to show that= — e(j + 1/2); with this result, he
or she can show that the onlgxcept for a phagenormalized
eigenfunctions are precisely the spherical spifiors.

[ll. THE RADIAL PART

Let us now address the radial part of the problem. We arg. D+ eiom
€ 1

where is given in Eq.(3). From this result we can deduce
the termL -3 and substitute it into4-p). We finally obtain

€ 1
(a'p):ar pr_iﬁIBF J+§ (13
where
1
o =—af,
(14)

(—if) d  i% 1+ d
rar Y ar)
We are then ready to write the relativistic radial Hamiltonian

[equivalent to Eq(1) of the nonrelativistic cageThe result
is very simple,

Pr=

j+% +Bmc+V(r).

€
Hp=ay pr_iﬁBF (15
\We see that in the relativistic case the equivalent term for the
centrifugal force termI(I+1)/r? is now —ifa,Be(]
+1/2)/r. The important point here is that this result is valid
for any central potentiaV/(r).

Now we are ready to study the radial part of our problem.
The first things we need to consider are the teoms that
come in thea, term. Since thex matrix is nondiagondlEq.

(3)], the equation for the big component has a mixed term of
the form (o)), ¢om and exactly the opposite for the
small one, where we must deal witho(r)),_om. Of
course we know that both terms should be canceled out, so
we suspect that we have a proportionality relation of the
form (o 1)V« com™~ Nz e2m- We can show that this is ex-
actly the case using the following argument. First notice that
if we perform a reflection through the origin, the term, say
goes as ¢ NVyeom——(—1) (o
NN+ om: because of the extra change of sign produced by

=(1/hc)ym“c"—E” is positive definite. Furthermore, let us (4.1, But this is precisely the behavior of the only other

interested in bound states; therefore the quantity
define
_ zé _ _ it _ Im@-E
S Zmegic 20 Tt vENmEE

(10

where o= 1/137 is structure fine constant. To construct the

radial Hamiltonian, we use first the relatior€)(a-p)
=(1/42)(Z-r)(2-p)=r-p+(i/7)2-L. We then use thai?
=[L+(1/2)2]?=L2+3-L+(3/4)h2.
expression fot_? to obtainL-X. The point here is thdt? is

spherical spinor availabléy, _ on, SO both terms should be
proportional. Let us call the constant of proportionality
From the well-known relation Y"(0,¢)=[(21+1)/
4771Y2 80 We find10

(o) Vi eom(0,8) | 9-0=— Vi e2m(6,®) | 9-0.-

So we conclude tha=—1.
Now we can write the differential equations for the radial

(16)

So we now need an part of the problem in terms of the dimensionless variable

p=Kkr as

not a good quantum number, since only the total angular

momentum commutes with the Hamiltonian. From the gen-

eral form of y(r,6,¢) [Eq. (8)] we see that whet.? is

applied to a solution, the big component behaves with the

orbital quantum numbel=j+ /2, whereas for the small
one the orbital quantum numberlis=j — /2. We then have

I+ =j(j+D+e(j++3 (113
for the big component, and
A" +D)=j(j+1)—e(j++13 (11b)

for the small one. Thus the action bf over one solution of
the form given by(8) is always

L2=2%[j(j+ 1)+ Be(j+3)+1], (12
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_i+ﬂ G(p)=| — +£ F(p) (17a
ap " p) ST T R
and
(i+ﬂ)F(p):(y_l+£)G(P) (17b
dp »p p ’

where we use the Coulomb potenti&(r) = — Ze?/4me,r .
We now redefine the radial functios(p) and G(p) in
Egs.(179 and(17b) to the form

F(p)=Vmc+E[¢,(p)—¥_(p)], (18
G(p)=Vmc—E[ ¢ (p)+¢_(p)]. (19
R. P. Mw-y-Romero 1051



In terms of the new functiongr. (p) and _(p), we thus exponential plus a constant, unimportant for the point at
arrive at the following set of equations for our problem: ~ hand. We then obtain that for very large v(p)~e?"; or
equivalently thaty, (p) ~ p®e”. This solution diverges at in-

P d o+ E w_(p) finity unless we ask for the series to be a polynomial. If we
dp Jm2cF—E? choose
m u—S—1/2=n, (27)
:<ﬁ+ﬂ> ¥+ (p) (20 wheren is an integer, then the resultant equation can be
regarded as a generalization to the noninteger irdafxthe
and usual associated Laguerre differential equatfoRrom Eq.
(27) we can deduce the energy spectrum, without explicitly
_ i_ n fe . (p) solving the differential equatiof25), but we shall discuss
P dp P Jm?cA—e?| " P this point in Sec. M2 As shown in the Appendix, the solu-
tions to this differential equation are polynomials of order
{m The equation corresponding #_(p) can be obtained in
- \/ﬁ_ 7 |- (p)- (21)  analogous fashion. The complete solution can then be written

as
This first-order system can be uncoupled multiplying by s _ 2s

the left the first equatiofiEq. (20)] times the operators that ¥-(p)=ap>exp—p) Ly 1(2p), 28

appear between square brackets in the secor_ld equation and, ¥ (p)=bpS exq—p)LﬁS(Zp), (28)

vice versa, by multiplying the second equatideq. (21)]

times the operators that appetaetween square brackgia ~ Wherea andb are, at present, unknown constants.

the first one. This procedure gives us the second-order sys- The Laguerre polynomialg;;(p) of noninteger index are

tem related to both the hypergeometiie;(—n,a+1;p) and the
2 d , Sonine polynomiaf$ T (p) through the relation
Y R _ 2 2_ 2 _
[ p dp2 pdp 2(IL(’ 1)p+p +(TJ g ):|lr/l—(p) 0 . F(a+n+l)
(22) ﬁn(P)ZmlFl(—n,a+l:P)
and = (—1)"T(a+n+1)T"(p). (29

Y. (p)=0, As we shall see in the Appendix, these polynomials are very
similar to the usual integer index Laguerre polynomials. In
23 the Appendix we also study some of their more important

d2
{—pzd—pz—pﬁ— 2up+p?+ (1= %)

where we have defined properties.
= —gE + ! 24
H= Jmi—gz 2 (249 |v. THE ENERGY SPECTRUM

Let us now studyy (p). To that end, we first define the Tfhe e(rju?]rgy S\F/’\?C”Ug‘ is easii_l(é;ptaineﬁ from.th(-lz S%I_utlions
functi dina t — _ ARt we found here. We substitute into the original radia
tﬁgtc Iv?/z vfj;&(a():iol:(lr}g) ?Ol’llﬁrfgl)l p etexp( P(p) e differential equationgEgs. (179 and (17b] and substitute

' P PI=UAP y 9 the recurrence relation@2) from the Appendix to obtain
d*L(p) dZ(p) the following conditions:

——— +t[(2s+1)—
Pz TH )=rl—, a(rj+s— v 1+n)+b(n+2s)=0,

2. 22 o 1\ ap— (30)
(s°+¢ Tl)+(/.L—S—1/2) £(p)=0. (25 b(7,—s+{v t—n)—an=0.

Solving these last two equations gives us a relationship be-

We now impose the condition that the solution must be welfweenn and». From Eq.(10) we see that we can then solve
behaved at the origin. This in turn implies that the terp 1/ for the energyE and obtain the energy spectrum; the result is

should vanish: given by
2, 42 2_ 2 ~1/2
s+ -7 =0, (263 E=mc? 1+—2-_§1/2) (31a
where we choose the positive root to avoid the divergence (p
already mentioned, We can write our result in a more familiar form if we define
S m (26b) the principal quantum number &=j+1/2+n, ande; as
e=N-s—n=j+3-s, (31b)

This condition is precisely the same one obtained in the

power series method, when one asks for a regular behavior #ienu— 1/2=s+n=N—¢;, which gives precisely the well-

the origin. known energy spectruttt. 26 This result is exactly the same
We also look for vanishing solutions at infinity. From Eqg. as the one obtained from E(7), so we are now very con-

(25 we see that in this limit the terms proportional po fident of the validity of(30).

dominate, so for very largep we have pd?L(p)/dp? To proceed, we shall takb=—a(7;+s+ n—¢v YH/(n

—pdL(p)/dp~0. The solution to this equation is clearly an +2s), and write the result in a symmetrized form:
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Table I. We can classify the eigenstates of the relativistic hydrogen atom fox/, THE NONRELATIVISTIC LIMIT
each value of the principal quantum numtéraccording to the way the

orbital angular momentum couples with the spin.ef +1 then j=I It is interesting to study how we recover from our results
—1/2. Otherwisee=—1 andl =j —1/2. Note that for each the state with  the usual Laguerre polynomials that appear in the nonrelativ-
the highest angular momentum exists only & —1. istic hydrogen atom. First we recall that the nonrelativistic

limit for the energy is obtained from the series development

States NIj(9 of E, retaining only the first two terms,
N j =0 =1 =2 72 ~1/2 2
1 1/2 1S, (e=—1) E=m02 1+—(N_€-)2 chz[l—ﬁ} (35)
2 12 By(e=-1) 2Py, (e=1) !
32 2P, (e=—1) So, in this limit we haveej=j+1/2—s~0, becauses
3 1;2 Buz(e=-1)  3Pyp(e=1) e =7 —{?~j+1/2. That is, in this limits becomes an inte-
glg Pz (e=-1) ;3’2&;1}1) ger and the Laguerre polynomials in E§2a are now the
o same as those employed in the nonrelativistic case. Since
= Z« this means that the effects of the fine structure constant
are negligible, as they should be. For other energy-dependent
quantities we follow the same recipe. For instanceifand
F(p)= JmE+ Ecpse*p[AnL-ﬁS(zp)jL Bnﬁﬁil(zp)]v k, we easily find that in the nonrelativistic limit
” (323 mé—E ¢
G(p)=— VMm@ —ECpe "[AL3%(2p) ~BnL: 1(2p)], V=N @TE" 2N
whereA,, andB,, are given by (36)
Anz(rj+s+n—§v*1)l’2, k= (1/hc)\/m2c —E2~ mc—

=(n+2s)(rj+s+n—¢v 1)~ (32D order to be more compatible with the nonrelativistic treat-
ments, it will be convenient to introduce the nonrelativistic

andC is a normalization constant. It can be obtained from > 2 .
energyE,, = — £?’mc?/2N? (E,,<0) and define

e *x¢ a X) L(X)dX= . 8mE, 4m-c
o mn n! K2= > r_ > ~4Kk?, (37
In the Appendix we give a simple proof of this result. WeT tis, in t relativistic limit we have t t simply

again need to use relatiorf80) in order to obtain {;+s
g 180) \l =2kr—Kr.

-1 _ 1
n- d §V+ ) Iz(/n\/_LSnZi—EgV rzlnrfnjL 22 WZ e;lso Wt"r: We can now study the nonrelativistic behavior of the wave
need (1+s)=(E/Vmc » WRICh IS obtain€d 1rom the ¢, tjgns, Perhaps the easiest way to do that is to start from

e.xpre?ﬁion forltthe energiEq. (31a]. Elementary algebra g4 (324. Following the same reasoning as above, we easily
gives the resu find for the nonrelativistic limit ofA,, andB,,:

ﬁZS . / [F(n+23+1)] 12 (34) Ap=(7i+s+n— v H¥2~[ (e~ 1)(j+1/2)—n]*2

_ _ =(N+2s)(rj+s+n—{v 1) 12 (38)
Although Eq.(32) was discovered a long time ago by L.
Davies!’ it has remained largely unknov&g.Nevertheless, ~[(e=1)(j+1/2—n] 2
its importance should not be neglected. In fact, it is possible
to obtain complex results in an easy way with the results
found here. For instance, it has recently been employed to
calculate arbitrary matrix elements of powers(of}), and
recurrence relations for arbitrary nondiagonal, radial hydro-_

genic relativistic matrix elements, including a relativistic

We need to study two cases depending on whejker
+1/2 orj=1—1/2. Let us start with the cage=1+1/2 (e
=-1). In this case, A,~i[n+2(j+1/2)]*? and B,
—i[n+2(j+1/2)]" 2 Thei is just a phase factor, unim—
portant for the point at hand, and means only that the rela-
version of the Pasternack—Sternheimer fdle. tivistic conventions used by us are slightly different than the

Another point worthy of mention concerns the classifica-"onrelativistic ones. FronB82a we get
tion of the states of this system. We recall that according tqe (kr)~|C,|ri * Y2~k £20+ Y2 (2kr) — £20112(2kr)]
our definition, the principal quantum number is given Ny 1ok 2121
=j+1/2+n, wheren is the degree of the Laguerre polyno- =[Cplri " Ve Lol (2kr), (39

mial associated with this state. For the ground statel, we  where the last step follows from the second recurrence rela-
have onlyj=1/2 andn=0. Sincel =]+ €/2, we have two tjon in (A5) and|C,,] is a normalization constant that can be
choices,| =0 for e=—1 andl=1 for e=1. This last result obtained from(A9) in the same way as we did for the rela-
is not possible, sincecannot be greater thgnso this state tjvistic case. Sincgé=1+1/2, we have that+1/2=1+1 and
does not exist. In the traditional spectroscopic notahidp, 2(j+1/2)-1=21+1. Also, fromN=j+1/2+n we obtain

we have only one stateS(e=—1). For the next energy thatn=N—|— 1. Putting all this together we get

level, we haven=2, andj=1/2, 3/2; but again the stafe I+1g-(KI2) 72141

—3/2 ande=1 does not exist. We then have only three T (KN=[Cnr""e Ly-i-a(Kr). (40)
states: By(e=—1), 2Py(e=1), and Pgy(e=—1). Th|s is precisely the nonrelativistic solution we were looking
Continuing in this way, we obtain Table I. for.20
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The casg =1—1/2, (e=1) is a little bit more involved. In Ti ()

this case we haveA,~in? and B,~—in"Y{n+2(j

+1/2)]. Again, except for unimportant phases we get from

(323 that

F(kr)=|CplritY2e=Kn 20+ Y2 2kr)
~[n+2(+ 1/2) 1201 Y2 2kn)] €/ TN | cuine_Rot@r00

— |Cnr|rj+1/2e7kr£rl12(j+l/2)(2kr) kJ Ooeziﬂ:
— _|Cnr|rj+1/2e_kr£ﬁ(_j;1/2)+1(2kr). (41) |Z|<1

The second step above follows from the second recurrence

relation in (A2) and the third one follows fronc/“(2kr) Fig. 1. The generating functiog(x,) is not single valued, but we can
choose a cut line from 1 te over the real line. The integration contour is

=— Ly 1(2kr). This last relation in turn follows by taking  given by the circleC of radius|z| <1.
the derivative in the second recurrence relatiofAB). Here

[=j+1/2 andN—I—-1=n—1. Again, the minus sign is just

a phase, so we can put the following for the radial function

F(kr): APPENDIX

F(kr)=~|Cpr' "™ M2 LML 1 (Kr). (42) The purpose of this Appendix is to study some of the more

So, as expected, we find again the same wave function as f§fiPortant properties of Laguerre polynomials of noninteger
thej=I+1/2 case index and to use our result to calculate the normalization

The small components go to zero becams®>E, as can ngztraalr:itﬁ W?J?}ttllz n(();c( zil)v_vays an easy task. We start from the
be seen in(329. The radial function is given byR(r) 9 9 b

=(1/r)F(Kr), whereF(Kr) is given by(40) and (or) (42). e XV(1-y
The complete, nonrelativistic solution is then just simply g(x,t)= W=n§) t"LR(X), (A1)
tﬂ(r,ﬁ,qﬁ):R(I’)M_E/zm(ﬁ,(b). (43)

which is simply a generalization to the noninteger index of
This last equation means that in the nonrelativistic limitthe usual Laguerre generating function. If we differentiate

the angular part is a spherical spinor with j + €/2. g(x,t) with respect tax and with respect to, we obtain the
recurrence relations
VI. CONCLUSIONS ¢ (X)=LEE(X)— LX),
In this paper we found that the solution of the relativistic XLI(X)=NLAX) = (n+a) LY 1(X), (A2)

hydrogen atom is given in terms of Laguerre functions of
noninteger index. These functions are handled in exactly thé2n+ a+1—X) L3 (X)=(n+a)Ln_1(X)+(n—=1) L7, 1(X),

same way as the Laguerre functions of integer index, and areh h . derivati ith h
in fact a natural extension of those used in the nonrelativisti?VNeré the prime means derivative with respecktd’hese

limit. This point of view gives the student more powerful 'ecurrence relations are exactly the same as those obtained in
tools than in the series approach used elsewhere. He or s integer index case. The generating function is not single
can use recurrence relations, Rodrigues formula, generatingued. but we can choose a cut line in the complex plane to
functions, etc. We illustrate this point by calculating the nor-1Y {0 invert(Al). From Fig. 1, we can conclude that
malization constant and the nonrelativistic behavior of the 1 e xd(1-2)
solution. This approach also gives the student a more unified £;(x)= py f mdz. (A3)
point of view of the quantum hydrogen atom, since in both mi Je(1=-2)*"z
caseqrelativistic and nonrelativistic Laguerre functions are e can show thatA3) is a solution of Laguerre’s differ-
involved in the solution. _ o _ ential equation by substituting into Laguerre’s differential
A final remark concerns Eq15). This equation is valid equation of noninteger indg¥q. (25) plus conditions26)].
for any central potentia¥(r) and is completely equivalentto e easily find that the differential equation is the integral of

d e 1 a total derivative over a closed curve, as happens to be the
—fh—+—j+=||G(r)=[E-mE—V(r)]F(r), case for the usual Laguerre polynomi%ﬂS?erforming the
change of variablez/(1—2z)=s—x, we find that
drr 2 w h f variablecz/ (1— 2) find th
44
d hE 1 Xy—a AN/ yN+taqn—X
Tl _ _ N ex «d(x""e™)
[ﬁerr —|i+35][F(D) [E+mc—V(r)]G(r). La0=— o ' (Ad)

We can then use it as a departure equation in any centr

. . . . éflhis result is precisely the Rodrigues formula. We can use it
potential system, including perturbation theory problems. P y 9

to deduce new recurrence relations, for instance from the
expression forL?, ;(x) and £&**(x) we find

(N+1) LY () =(n+a+1)LEX)—xLE(x),
We want to thank Dr. Gerardo Carmona and Dr. Dari wil N wil (A5)
Moreno for their valuable comments concerning this paper.  £n ~(X)=Ly(¥)+LyZ1(X).
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